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Abstract. A quantum algorithm is presented that can be used to distinguish between certain classes
of functions on a finite abelian group. The algorithm is patterned after and generalizes one due to
Deutsch and Jozsa for distinguishing a constant function from a balanced function on a direct sum of
copies of the integers modulo two.

The Deutsch-Jozsa algorithm is a quantum algorithm for distinguishing between two classes of
functions with values in {0, 1} on the set of n-tuples (a1, . . . , an) (ai ∈ {0, 1}). One class consists
of the constant functions and the other consists of the balanced functions, which, by definition, are
those that take on the value 0 for half of the n-tuples and the value 1 for the other half. Using
a traditional algorithm for such a determination requires a number of evaluations of the function
that grows exponentially with n, while the quantum algorithm requires only two evaluations of the
function. The purpose of this note is to present a generalization of this algorithm.

Let m1, . . . , mn be positive integers and let A = Zm1 ⊕ · · · ⊕Zmn . This is the group of n-tuples
a = (a1, . . . , an), 0 ≤ ai < mi, under the addition given by a + b = (a1 + b1, . . . , an + bn), where
ai + bi is addition modulo mi. Any finite abelian group is isomorphic to such a direct sum for
appropriate n and mi (1 ≤ i ≤ n).

Denote by F the additive group of all functions A → Zm, where m is the least common multiple
of m1, . . . ,mn. For f, g ∈ F , the sum f +g ∈ F is defined by (f +g)(a) = f(a)+g(a) (sum modulo
m). For a ∈ A, define ιa ∈ F by

ιa(b) = a ◦ b :=
n∑

i=1

aibim/mi ∈ Zm.

Note that if m1 = m2 = · · · = mn, then a ◦ b is the usual inner product of a and b.
Let ε be a primitive mth root of unity, that is, a complex number satisfying εm = 1 and εk 6= 1

for all 0 < k < m. One could take ε = e2π
√−1/m, for instance.

For f ∈ F , put
ϕ(f) =

∑

a∈A

εf(a) ∈ C.

Given a subset P of A, we shall say that f ∈ F is P -based if ϕ(ιa − f) = 0 for each a ∈ A\P (=
complement in A of P ). Theorems 1 and 3 below provide examples of P -based functions.

The Problem. Let {P1, . . . , Pt} be a partition of A, so that A = P1 ∪ · · · ∪ Pt and Pi ∩ Pj = ∅
for i 6= j. Let f be an element of F and suppose that f is Pk-based for some k. Then this k is
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uniquely determined (see Remark 1 below); we present a quantum algorithm for its determination.
The Deutsch-Jozsa algorithm is recovered as a special case (see Remark 2).

The Algorithm. For each integer i with 1 ≤ i ≤ n, let Hi be a Quantum Probability Space
(QPS) with basis {|j〉 : j ∈ Zmi}. If mi = 2, then Hi is called a qubit, and an example of such is
the z-spin state space of an electron. In general, Hi might be taken to be the z-spin state space of
an appropriate particle, necessarily a fermion if mi is even and a boson if mi is odd [3, p. 139].

Put H ′ = H1 ⊗ · · · ⊗Hn. We shall require an additional QPS Hn+1 with basis {|z〉 : z ∈ Zm}
for the storage of images f(a). The vector space H := H ′ ⊗ Hn+1 has (standard) basis {|a〉|z〉 :
a ∈ A, z ∈ Zm}, where |a〉|z〉 := |a1〉 ⊗ · · · ⊗ |an〉 ⊗ |z〉.

If we view Hi as the vector space of mi-dimensional column vectors over C by identifying |j〉
with the column vector having a one in the (j+1)st position and zeros elsewhere, then the operator
Ri : Hi → Hi given by

Ri(|k〉) = m
−1/2
i

mi−1∑

j=0

εkjm/mi |j〉

(k ∈ Zmi) has matrix representation m
−1/2
i

[
εkjm/mi

]
jk

. Since [εkjm/mi ]jk is the character table
of Zmi

, it follows from the orthogonality relations [1, p. 20] of irreducible characters (or by direct
computation) that Ri is unitary and thus so is the (generalized) Hadamard operator R = R1 ⊗
· · · ⊗Rn : H ′ → H ′. We have

R(|b〉) = |A|−1/2
∑

a∈A

εb◦a|a〉

(b ∈ A).
For f ∈ F , we define Uf : H → H by

Uf (|a〉|z〉) = |a〉|z + f(a)〉

(a ∈ A, z ∈ Zm). Since Uf permutes the standard basis vectors, it is clearly unitary. We remark
that in the special case n = 1, m1 = 2, f = identity map on Z2, the operator Uf is precisely the
“controlled-not” gate for which possible physical implementations have been suggested (see [1] for
instance).

Finally, take as generalization of the z-spin operator σz the unitary operator σ : Hn+1 → Hn+1

given by σ(|z〉) = εz|z〉 (z ∈ Zm), which has matrix representation diag(1, ε, ε2, . . . , εm−1).
We now proceed just as in the Deutsch-Jozsa algorithm. We initialize our system to the state

|0〉|0〉 and then apply unitary operators as follows:

|0〉|0〉 R⊗17−→ |A|−1/2
∑

a∈A

|a〉|0〉

U−f7−→ |A|−1/2
∑

a∈A

|a〉| − f(a)〉

1⊗σ7−→ |A|−1/2
∑

a∈A

|a〉ε−f(a)| − f(a)〉

Uf7−→ |A|−1/2
∑

a∈A

|a〉ε−f(a)|0〉

R⊗17−→ |A|−1
∑

b∈A

|b〉|0〉
∑

a∈A

εa◦bε−f(a).
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Since
∑

a∈A εa◦bε−f(a) = ϕ(ιb − f), and since ϕ(ιb − f) = 0 for each b ∈ A\Pk (f is Pk-based), this
last expression equals

|A|−1
∑

b∈Pk

|b〉|0〉ϕ(ιb − f).

It follows that a measurement at this point will produce a state |b〉 for some b ∈ Pk, and hence k
will be determined.

Remark 1. If f ∈ F is Pk-based, then, although it is not obvious from the definition, it follows
from the algorithm that f is not Pj-based for any j 6= k.

Theorem 1. For a subset P of A and an element a of A, the function ιa ∈ F is P -based if and
only if a ∈ P .

Proof. Given a ∈ A, the function χa : A → C× (= group of nonzero complex numbers under mul-
tiplication) given by χa(b) = εa◦b is easily seen to be a homomorphism and therefore an irreducible
character of A. Moreover, χa 6= χb for a, b ∈ A with a 6= b.

Fix a, b ∈ A. We have

ϕ(ιb − ιa) =
∑

c∈A

ειb(c)−ιa(c) =
∑

c∈A

εb◦cεa◦(−c) =
∑

c∈A

χb(c)χa(−c) = |A|δba,

where δba (= Kronecker delta) is one or zero according as b = a or b 6= a, and where the last
equality is from an orthogonality relation [1, p. 20].

Let P be a subset of A. If a ∈ P , then ϕ(ιb − ιa) = 0 for every b ∈ A\P , implying that ιa is
P -based. On the other hand, if a /∈ P , then ϕ(ιa − ιa) = |A| 6= 0, implying that ιa is not P -based.
The result follows. ¤

It is not obvious that the algorithm presented above generalizes that of Deutsch and Jozsa. We
next consider a generalization of the notion of a balanced function and show in Theorem 3 that
our algorithm can be used in this setting to obtain a generalization of the Deutsch-Jozsa algorithm
that more closely resembles it.

Let f be a function in F and let B be a subset of A. We say that f is balanced on B if f(B) is
a coset C of a nontrivial subgroup of Zm and the cardinality |f |−1

B (c)| (c ∈ C) does not depend on
the choice of c, that is, f |B takes on each element of C the same number of times. Note that if f
is balanced on B then, due to the nontriviality of the subgroup in the definition, f is not constant
on B.

Theorem 2. Let B be a subgroup of A. A homomorphism f : A → Zm is either constant on each
coset of B or balanced on each coset of B.

Proof. Let f : A → Zm be a homomorphism and assume that f is not constant on some coset
a + B of B. Then there exist b1, b2 ∈ B such that f(b1 − b2) = f(a + b1) − f(a + b2) 6= 0. This
implies that H := f(B) is a nonidentity subgroup of Zm. Since {f |−1

B (h) : h ∈ H} is precisely the
collection of cosets of K = ker f |B and since each of these cosets has the same cardinality as K, it
follows that f |B takes on each element of H the same number of times, that is, f is balanced on B.
Finally, if D = d+B is an arbitrary coset of B in A, then f(d+ b) = f(d)+ f(b) for each b ∈ B, so
that, by the previous argument, f |D takes on each element of the coset f(d) + H the same number
of times and f is balanced on D as desired. ¤
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Lemma. If B is a subset of A and f is a function in F that is balanced on B, then
∑

b∈B εf(b) = 0.

Proof. Let H be a nontrivial subgroup of Zm. Then H is cyclic and is generated by a divisor d of
m with d 6= m. Let C = z + H be a coset of H. Then C = {z + jd : 0 ≤ j < m/d}, so that

∑

c∈C

εc =
m/d−1∑

j=0

εz+jd = εz

m/d−1∑

j=0

(ed)j = εz · εm − 1
εd − 1

= 0,

where the next to the last equality is verified by multiplying both sides by εd − 1 and noting the
telescoping nature of the resulting sum on the left. The lemma follows. ¤

Let B be a subgroup of A. Let FB be the collection of all functions in F that are either constant
on every coset of B or balanced on every coset of B. Denote by B⊥ the orthogonal complement
relative to ◦ of B in A:

B⊥ = {a ∈ A : a ◦ b = 0 for all b ∈ B}.
Theorem 3. Let B be a subgroup of A and let f be a function in FB.

(1) f is constant on each coset of B if and only if f is B⊥-based.
(2) f is balanced on each coset of B if and only if f is A\B⊥-based.

Proof. Assume for the moment that we have proved the “only if” part of both statements. Suppose
that f is B⊥-based. By Remark 1, f is not A\B⊥-based. Then part (2) says that f is not balanced
on some coset of B. Since f is in FB , we conclude that f is constant on each coset of B. This proves
the “if” part of the first statement. The “if” part of the second statement is proved similarly.

Therefore, it remains to prove the “only if” part of each statement.
(1) Assume that f is constant on each coset of B. Let c be an element of A\B⊥. Let {ai+B}1≤i≤s

be the distinct cosets of B in A. We have

ϕ(ιc − f) =
∑

a∈A

ειc(a)−f(a) =
s∑

i=1

∑

b∈B

ειc(ai+b)ε−f(ai+b) =
s∑

i=1

ε−f(ai)
∑

b∈B

ειc(ai+b).

Now c is not in B⊥, so ιc(b) = c◦ b 6= 0 for some b ∈ B. Since 0 is in B and ιc(0) = 0 it follows that
ιc is not constant on B. Thus, ιc is balanced on each coset of B by Theorem 2. Using the lemma
we now see that the final sum above is zero for each i so that ϕ(ιc − f) = 0 and f is B⊥-based.

(2) Assume that f is balanced on each coset of B. Let d be an element of B⊥. With {ai+B}1≤i≤s

again the distinct cosets of B in A, we have

ϕ(ιd − f) =
∑

a∈A

ειd(a)−f(a) =
s∑

i=1

∑

b∈B

ειd(ai+b)ε−f(ai+b)

=
s∑

i=1

εd◦ai

∑

b∈B

εd◦bε−f(ai+b) =
s∑

i=1

εd◦ai

∑

b∈B

ε−f(ai+b).

By the lemma, the last sum is zero for each i, so f is A\B⊥-based. ¤

Remark 2. In the notation of the theorem, {B⊥, A\B⊥} is a partition of A, so it follows that the
algorithm can be used to distinguish between a function that is constant on each coset of B and
one that is balanced on each coset of B. This applies in particular to the choice B = A. Thus,
considering the special case m1 = m2 = · · · = mn = m, we see that the algorithm can be used to
distinguish between a function that is constant (on all of A) and a function that takes on each of
the values 0, 1, 2, . . . , m− 1 an equal number of times. When m = 2, this is precisely the situation
for the Deutsch-Josza algorithm.
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3. Sudbery, Anthony, Quantum Mechanics and the Particles of Nature, Cambridge University Press, 1986.

Department of Mathematics, Auburn University, AL 36849-5310
Department of Physics, Auburn University, AL 36849-5310


